Информация только для медицинских и фармацевтических специалистов

Ну, за кислород!

Ежегодная Нобелевская неделя открывается объявлением лауреатов в номинации «медицина или физиология». Высшая научная награда 2019 года присуждена за работы по адаптации клеток организма к недостатку кислорода – будь то высокогорье или просто душное помещение. 


В аудитории Каролинского института, где традиционно объявляют лауреатов медицинской Нобелевки, прозвучали имена американцев Уильяма Кейлина и Грегга Семензы, а также британца сэра Питера Рэтклиффа, изучавших реакцию организма на гипоксию.


Кислород необходим для жизни животных: он используется митохондриями, присутствующими практически во всех клетках, для преобразования пищи в полезную энергию. В ходе эволюции были созданы механизмы, обеспечивающие достаточное снабжение тканей кислородом. Каротидный синус, прилегающий к большим кровеносным сосудам с обеих сторон шеи, содержит специализированные клетки, которые измеряют уровень кислорода в крови, и, напрямую посылая химические сигналы в мозг, контролируют нашу частоту дыхания.


Работы нобелиатов 2019 года пролили свет на еще один механизм адаптации к изменению уровня кислорода, на сей раз – на клеточном уровне.

Вокруг эритропоэтина

Работы нобелиатов 2019 года пролили свет на еще один механизм адаптации к изменению уровня кислорода, на сей раз – на клеточном уровне. Грегг Семенза изучал ген гормона эритропоэтина (EPO) и то, как он регулируется изменением уровня кислорода. Используя генетически модифицированных мышей, он определил специфические сегменты ДНК, расположенные рядом с EPO, которые опосредуют ответ на гипоксию. Питер Рэтклифф обнаружил, что кислород-зависимая регуляция EPO есть во всех тканях организма, а не только в клетках почек, где обычно и синтезируется эритропоэтин, то есть была показана универсальность механизма.


Далее обе исследовательские группы вышли на белковый комплекс HIF (фактор, индуцируемый гипоксией) и выяснили, что он состоит из двух факторов транскрипции, сегодня известных как HIF-1α и ARNT. Однако дальше они уперлись в стену, пытаясь понять, как все эти механизмы соотносятся между собой.

Причем тут рак?

Разгадка пришла с неожиданной стороны, от врача Уильяма Кейлина, занимавшегося проблемой наследственных злокачественных опухолей. Его работы привели к открытию еще одного гена, задействованного в ответе на гипоксию, VHL, отвечающего за синтез некоторых противораковых соединений в организме. Связь прямая: злокачественные клетки лучше чувствуют себя именно в состоянии недостатка кислорода, и эта особенность позволяет им успешно конкурировать со здоровыми клетками, которым в условиях гипоксии тяжело полноценно функционировать. 


В итоге сложилась целостная картина работы клеток в разных кислородных условиях. С точки зрения современной науки выглядит она следующим образом:


При низком уровне кислорода (то есть при гипоксии) HIF-1α защищен от уничтожения протеасомами и накапливается в ядре, где связывается с ARNT и активирует специфические последовательности в ДНК (HRE), связанные с работой клетки в условиях гипоксии (1). При нормальном уровне кислорода HIF-1α быстро уничтожается протеасомой и адаптивные механизмы не включаются (2). Кислород регулирует этот процесс за счет добавления ОН-групп к HIF-1α (3), после чего к нему присоединяется белок VHL (4). Он и становится «черной меткой» для всего комплекса, который затем уничтожается протеасомой.


При низком уровне кислорода (то есть при гипоксии) HIF-1α защищен от уничтожения протеасомами и накапливается в ядре, где связывается с ARNT и активирует специфические последовательности в ДНК (HRE), связанные с работой клетки в условиях гипоксии (1). При нормальном уровне кислорода HIF-1α быстро уничтожается протеасомой и адаптивные механизмы не включаются (2). Кислород регулирует этот процесс за счет добавления ОН-групп к HIF-1α (3), после чего к нему присоединяется белок VHL (4). Он и становится «черной меткой» для всего комплекса, который затем уничтожается протеасомой. 

Практические выводы

Благодаря новаторской работе нобелевских лауреатов 2019 года мы знаем гораздо больше о том, как различные уровни кислорода регулируют фундаментальные физиологические процессы. Кислородное зондирование позволяет клеткам адаптировать свой метаболизм к низким уровням кислорода, например в мышцах во время интенсивных упражнений.


Другие примеры адаптивных процессов, контролируемых кислородным зондированием, включают образование новых кровеносных сосудов и выработку эритроцитов. Наша иммунная система и многие другие физиологические функции также настраиваются с помощью этого механизма. Он участвует и в процессе развития плода, контролируя образование кровеносных сосудов и развитие плаценты.


Усилия академических лабораторий и фармацевтических компаний в настоящее время сосредоточены на разработке лекарств, которые могут воздействовать на различные патологические состояния, активируя или блокируя чувствительный к кислороду механизм.

 

По материалам Нобелевского комитета

https://www.nobelprize.org/

Журнал "Российские аптеки" №11, 2019

Вам могут понравиться другие статьи:

Собираем дорожную аптечку
Подробности
Собираем дорожную аптечку

Непростая ситуация с коронавирусом нарушила запланированные еще зимой отпускные зарубежные выезды, но собрать аптечку для поездок на дачи и более близких путешествий никогда не помешает. Какие сред...

Подробнее
Интернет после пандемии
Подробности
Интернет после пандемии

У COVID-19 множество самых различных последствий, в основном негативных. Но есть и несомненные плюсы: толчок к развитию науки, переосмысление роли медицины в обществе, ну и значимость Всемирной сет...

Подробнее
Бархатные ручки
Подробности
Бархатные ручки

Салоны красоты, закрытые в апреле, заставили многих вспомнить о домашнем уходе за руками и ногтями. Ассортимент средств, которым под силу сделать кожу бархатистой, а ногти блестящими, действительно...

Подробнее
Cила волос
Подробности
Cила волос

Красивые волосы – это особое богатство, обладать которым хотели бы многие. Поэтому покупатели часто интересуются, какие именно средства помогут сделать их волосы более крепкими, густыми и блест...

Подробнее
Клещевые неприятности
Подробности
Клещевые неприятности

Редкий человек может похвастаться, что ни разу в жизни не сталкивался с клещом. Эти родственники пауков – самые многочисленные в своем классе, их насчитывается более 48 тыс. видов, так что живут он...

Подробнее
Чем заняться с детьми на карантине
Подробности
Чем заняться с детьми на карантине

Режим самоизоляции, на который дружно перешла страна, сделал невероятно актуальной проблему детской занятости. Родители не всегда могут уделить чадам должное внимание. Чем же их можно занять?

Подробнее
Если вы фармацевт, провизор, первостольник, специалист здравоохранения или медицинский работник наш журнал «Российские аптеки» для вас.